PHYSICAL UNCLONABLE FUNCTION HARDWARE KEYS UTILIZING KIRCHHOFF-LAW-JOHNSON-NOISE SECURE KEY EXCHANGE AND NOISE-BASED LOGIC
نویسندگان
چکیده
منابع مشابه
Physical Unclonable Function Hardware Keys Utilizing Kirchhoff-law-johnson-noise Secure Key Exchange and Noise-based Logic
Weak unclonable function (PUF) encryption key means that the manufacturer of the hardware can clone the key but not anybody else. Strong unclonable function (PUF) encryption key means that even the manufacturer of the hardware is unable to clone the key. In this paper, first we introduce an “ultra” strong PUF with intrinsic dynamical randomness, which is not only unclonable but also gets renewe...
متن کاملPhysical uncloneable function hardware keys utilizing Kirchhoff-law-Johnson-noise secure key exchange and noise-based logic
Weak uncloneable function (PUF) encryption key means that the manufacturer of the hardware can clone the key but anybody else is unable to so that. Strong uncloneable function (PUF) encryption key means that even the manufacturer of the hardware is unable to clone the key. In this paper, first we introduce an "ultra"-strong PUF with intrinsic dynamical randomness, which is not only not cloneabl...
متن کاملNotes on Recent Approaches Concerning the Kirchhoff-Law-Johnson-Noise-based Secure Key Exchange
We critically analyze the results and claims in [Physics Letters A 373 (2009) 901–904]. We show that the strong security leak appeared in the simulations is only an artifact and not caused by "multiple reflections". Since no wave modes exist at cable length of 5% of the shortest wavelength of the signal, no wave is present to reflect it. In the high wave impedance limit, the conditions used in ...
متن کاملErrors and Their Mitigation at the Kirchhoff-Law-Johnson-Noise Secure Key Exchange
A method to quantify the error probability at the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange is introduced. The types of errors due to statistical inaccuracies in noise voltage measurements are classified and the error probability is calculated. The most interesting finding is that the error probability decays exponentially with the duration of the time window of single bit exchange...
متن کاملGeneralized Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange system using arbitrary resistors
The Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange system has been introduced as a simple, very low cost and efficient classical physical alternative to quantum key distribution systems. The ideal system uses only a few electronic components-identical resistor pairs, switches and interconnecting wires-in order to guarantee perfectly protected data transmission. We show that a generalize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fluctuation and Noise Letters
سال: 2013
ISSN: 0219-4775,1793-6780
DOI: 10.1142/s0219477513500181